
© 2022 JETIR April 2022, Volume 9, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2204343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d351

Ride-Matcher Architecture

Sana Shaikh

Student , Computer Engineering

Trinity Academy of Engineering

Pune , India

sanashaikh0701@gmail.com

Alfiya Shahbad

Asst. Professor , Computer Engineering

Trinity Academy of Engineering

Pune, India

alfiyashahbad.tae@kjei.edu.in

Abstract—The daily home-office commute of millions of people
in crowded cities puts a strain on air quality, traveling time and
noise pollution. This is especially problematic in western cities,
where cars and taxis have low occupancy with daily commuters.
To reduce these issues, authorities often encourage commuters
to share their rides, also known as carpooling or ridesharing. To
increase the ridesharing usage it is essential that commuters are
efficiently matched.

a) : In this paper we present RideMatcher, a novel peer-

to-peer system for matching car rides based on their routes and
travel times. Unlike other ridesharing systems, RideMatcher is
completely decentralized, which makes it possible to deploy it
on distributed infrastructures, using fog and edge computing.
Despite being decentralized, our system is able to efficiently
match ridesharing users in near real-time. Our evaluations
performed on a dataset with 34,837 real taxi trips from New
York show that RideMatcher is able to reduce the number of
taxi trips by up to 65distance traveled by taxi cabs by up to
64trips by up to 66

Index Terms—Keywords: Ride Sharing System,Ride Mtcher.

I. INTRODUCTION

Ridesharing is an important way to reduce traffic congestion

and travel costs for commuters around the world. Ridesharing

is also environmentally friendly, as sharing journeys reduces

carbon emissions. To encourage ridesharing, many countries

employed high-occupancy vehicle lanes, which are traffic lanes

restricted to vehicles carrying more than one passenger .

a) : Recently, several online ridesharing platforms that

match commuters with drivers have been put in place. There

are two major categories of such platforms: offline and real-

time. Offline platforms work by keeping databases of com-

muters and putting into contact those who have similar routes

to work. Examples include Zimride, which provides rideshar-

ing solutions for companies and universities, or BlaBlaCar,

which focuses on sharing long-distance trips between cities.

Real-time ridesharing has seen a significant increase in popu-

larity recently, with the emergence of mobile applications like

Uber , Lyft or Via. These applications make use of complex

routing algorithms to determine if trip requests from many

users can be served by the same driver. Additional features

like GPS tracking, automated payments and the validation of

drivers through feedback make these applications extremely

attractive to customers. However, they rely on occasional

drivers, which makes them less suitable for commuters, who

prefer a reliable and long-term transportation method.

One thing that all the above systems have in common is that

they rely on traditional cloud infrastructures to provide their

services. This has several advantages, like good reliability and

usability, which stem from the fact that cloud computing is

a mature technology. However, the emergence of Internet of

Things and the recent developments in the area of mobile

computing created a demand for highly responsive cloud

services. To fulfill this demand, a new paradigm, called fog

computing, was introduced . Fog computing can be seen as

an extension of cloud computing, in which computing nodes

are less centralized and placed closer to the sources of data,

which leads to better scalability, shorter response times and

increased fault tolerance.We notice that all these advantages of

fog computing are also requirements in a ridesharing platform,

as it has to process large amounts of mobile data in a timely

manner.

b) : In this paper we study the possibility of designing

a decentralized ridesharing system that can be deployed on

fog infrastructures. In this system, participants equipped with

mobile devices (e.g., smartphones) connect in a peer-to-peer

fashion in order to share their rides. As opposed to a tradi-

tional cloudbased service, participants do not use a central

database to find available rides. Instead, they use short range

communication technologies, like Bluetooth or WiFi Direct,

to discover other participants that provide rides matching their

needs. Just like a person who goes in the street to find a taxi,

the system running on a mobile device scans the surroundings

and attempts to find rides that match a desired route. To

further improve the chances of finding good rides, the system

employs a gossiping technique that uses a mesh network on

top of the fog infrastructure. This mesh network is used by

the participating mobile nodes to advertise and find available

rides. When two or more mobile nodes determine that they

can share a ride, they organize themselves into a ridesharing

group. This happens automatically and autonomously, without

any mediation.

c) :

II. RIDE MATCHER SYSTEM

In this section we describe the components of the Ride-

Matcher system and the interactions between them. The main

feature of our system is decentralization. In RideMatcher, all

mobile nodes (e.g., personal cars, taxis, pedestrians) perform

only local operations, without relying on a central coordinator.

The goal of each mobile node is to group with other mobile

http://www.jetir.org/
mailto:sanashaikh0701@gmail.com
mailto:alfiyashahbad.tae@kjei.edu.in

© 2022 JETIR April 2022, Volume 9, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2204343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d352

nodes that have similar routes at a certain time, such that

sharing a car ride with these nodes cuts down the cost of the

trip. In pursuing this goal, each mobile node is selfish, being

interested only in obtaining a higher benefit for itself, without

caring about other nodes in the system. However, in order to

ensure that the system converges to a stable state, we define

a set of rules in order to prevent situations when nodes keep

grouping and ungrouping indefinitely. Our system is based on

our earlier PeerMatcher system . However, as stated in section

II, there are several changes that have to be made in order to

adapt PeerMatcher to the ridesharing problem:

1) Peer Discovery. Mobile nodes need a mechanism to

discover other nodes in the system. This task is not trivial,

as there is no central service that can provide them with

information about other participants. 2) Matching Car Rides.

When mobile nodes find each other in the network, they need

a way to assess the similarity of their rides. For this purpose,

we use the weight function WR defined previously. 3)Flexible

Groups. Mobile nodes should be able to organize in groups of

different sizes. Therefore, we cannot it allows mobile nodes to

learn about rides of other nodes they did not discover directly.

Therefore, the chances of finding a matching ride increase

considerably.

a) : In order for the gossiping protocol to work properly,

any two nodes in the peer-to-peer network should be able

to connect with each other. To realize this, we assume that

all the mobile nodes are permanently connected to an edge,

fog or cloud infrastructure. The only requirement for this

infrastructure is to provide a reliable communication medium

for the mobile nodes, as our system does not rely on any

centralized service or database. This has the advantage that

if a part of the infrastructure goes down, the RideMatcher

system will continue to work for the nodes that do not rely

on that part. Scaling the infrastructure up is also easier, as

only the networking part has to be scaled. In RideMatcher,

the computation is performed by the mobile nodes, without

relying on any centralized computing facility. This is possible

thanks to the fact that RideMatcher is very lightweight, in

terms of both computation and communication.

III. MATCHING TAXI RIDES

To evaluate our system, we implemented RideMatcher in

the PeerSim simulation environment [12] and tested it on a set

with 34,837 taxi rides from New York. A. PeerSim PeerSim

is a peer-to-peer simulator that assists the implementation and

testing of peer-to-peer protocols on a large scale.

1) Algorithm: 1: function NEXTCYCLE()

2: refreshKnownNodes()

3: if node is not in ridesharing group then

4: group ← findSuitableGroup()
5: if group is not null then

6: joinGroup(group)

7: end if

8: else if node is in ridesharing group then

9: group ← findBetterGroup()
10: if group is not null then

11: if group is not full then

12: joinGroup(group)

13: else

14: swapGroup(group)

15: end if

16: end if

17: end if

18: end function

PeerSim is lightweight and easily configurable, allowing the

simulation of networks of more than 107 peers structured in

various topologies. To make the simulations more realistic,

PeerSim supports dynamic scenarios such as churn or node

failures.

a) : One particular feature of PeerSim is that it supports

stacking multiple protocols on each peer. This is especially

useful in the case of RideMatcher, where each node has

to run the gossiping protocol and the matching protocol

simultaneously. In PeerSim, this can be done easily by creating

two classes that extend the Protocol abstract class, which

incorporates common methods that are useful for any peer- to-

peer protocol, like sending messages to other peers or

executing periodic tasks. PeerSim also facilitates the exchange

of data between multiple protocols that are stacked. In our

case, the gossiping protocol periodically informs the matching

protocol about new mobile nodes that were discovered.

b) : In PeerSim, protocols work in rounds (or cycles).

Each protocol has to define a method called nextCycle, where

it declares a set of actions that have to be taken in each

round. In PeerSim, these rounds are executed one after another,

without interruptions. However, in a real-world application,

rounds are executed at a predefined frequency. Choosing the

right frequency depends on the usage scenario. While a high

frequency would give better performance, a low frequency

would determine less resource usage. Fig. 4 shows the actions

taken by the matching protocol in each round. We have already

discussed them in the previous section.

c) : Taxi Rides Dataset We evaluate our RideMatcher

system using an extensive dataset of taxi rides from New

York. The dataset contains 34,837 yellow taxi rides that took

place on 10 June 2016 between 7 a.m. and 9 a.m., which

is the typical rush hour in New York. We also considered

rides from other days randomly picked from March, April

and May 2016. Since the results were similar, in this work

we focus only on the dataset from 10 June. The following

details are provided for each ride in the dataset: start time, end

time, origin coordinates (latitude and longitude), destination

coordinates, cost, distance traveled and passenger count. For

this dataset, we focus on the typical carpooling scenario,

where people share rides to work in the morning. Therefore,

we omit in our experiments those rides that have an airport

as origin or destination (these are excluded in the 34,837

rides). Given that the dataset contains only rides by yellow

cabs, most of the rides were done in Manhattan. We also

considered using data from green taxi cabs, which operate

mostly outside Manhattan, but the data was insufficient, as

there are usually only 3,000-4,000 green cab rides during rush

http://www.jetir.org/

© 2022 JETIR April 2022, Volume 9, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2204343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d353

hours. By running RideMatcher on this dataset, we aim to

match as many taxi rides as possible in order to reduce the

traffic caused by taxi cabs and also to reduce the cost of the

rides. The matching is done using the weight function WR

discussed in the previous sections. We match cab rides based

only on their actual routes, without taking into account empty

vehicle repositioning (when a cab is on the way to pick up

a passenger). In our simulations, we also take into account

the number of passengers carried by each cab, as discussed in

Section IV-C. For most of the simulations, we consider that

the maximum capacity of each cab is 5 passengers, as required

by law in New York.

IV. IMPLEMENTATION

To be able to use the taxi rides dataset, we have to

simulate the information exchange between taxi cabs in traffic.

This helps us test whether our peer-to-peer system would be

effective in real-world situations. This is not directly attainable

using only the rides dataset, as it only contains data about

the origins and destinations of the rides, without providing

any information about their routes. Therefore, our approach

is to first generate routes for each ride, and then compute the

intersections between taxi cabs in traffic.With this information,

we can build a graph where each node represents a ride

operated by a taxi cab and each edge represents an intersection

between two rides in traffic. RideMatcher uses this graph

to initialize the gossiping protocol, which uses the graph to

further disseminate information about taxi rides in the network.

Finally, the nodes from the graph use the disseminated data

about rides to form ridesharing groups.

a) : We use the GraphHopper library to compute the

routes for the rides. GraphHopper works by taking as input a

map in OpenStreetMap format and building a graph of roads,

in which each edge represents a road segment and each node

represents an intersection. We use this graph to compute the

routes for all the rides in the dataset. Each route is represented

as a list of road segments and a list of intersections. In

RideMatcher we use this list of intersections to determine

whether any two rides intersect. Since the duration of each

ride is available in the original dataset, we divide this duration

evenly among the segments of the ride’s route and compute

the timing for each intersection point of the route. Finally.

we compare the intersection points and timings of every pair

of routes and determine which rides intersect. We consider

that two rides intersect if they have at least one common

intersection point and the timings of that intersection point

differ by less than a predefined threshold. In our simulations

we use a threshold smaller than 2 minutes, which is the

duration of a typical traffic light cycle.

b) : Fig. 1 shows the components of our simulator. Ini-

tially, the taxi cab intersection graph is computed as described

above. This graph is then used to initialize the gossiping

protocol on all nodes. During the execution, the gossiping

protocol and the matching protocol work in parallel, with the

matching protocol periodically querying the gossiping protocol

about new rides that were discovered. When new rides are

Fig. 1. RideMatcher Simulator Architecture.

available, the matching protocol attempts to form ridesharing

groups or to swap groups using the rules described in the

previous section. Whenever a ridesharing group is formed or

changed, this information is disseminated through the network

by the gossiping layer.

V. RELATED WORK

In this section we review the contributions in the field of

ridesharing, with a focus on large-scale dynamic ridesharing

systems and goal-oriented systems.

A. Large-scale Dynamic Ridesharing Systems

Like RideMatcher, these systems address the ridesharing

problem at city-scale. T-Share proposes a taxi searching and

scheduling algorithm that uses a spatio-temporal index to serve

dynamic taxi cab queries in real-time. The focus of the system

is to reduce the total distance traveled by cabs and also to

increase the query processing throughput. The system is later

extended to take into account the monetary implications of

ridesharing . The problem of reducing the cost of sharing rides

is further elaborated in , which proposes a greedy randomized

adaptive search procedure (GRAPS) to reduce the cost of the

trips. Huang et. al. focus on the user’s benefit, by proposing a

system that lets the user define waiting time and service time

constraints.

Like the systems above, RideMatcher is able to operate on

a large scale while taking into account metrics like cost and

traveled distance. Additionally, our system has the advantage

http://www.jetir.org/

© 2022 JETIR April 2022, Volume 9, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2204343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d354

of operating in a decentralized way, which further increases

scalability and response time.

B. Goal-oriented Ridesharing Systems

The complexity of the ridesharing problem makes it difficult

to design a system that has all the benefits. Therefore, systems

usually focus on optimizing just a few ridesharing metrics.

For example, CallCab aims at increasing the availability and

affordability of taxicab services by using historical data to

learn the usual routes that cabs take and using this data to

increase the opportunities for ridesharing. Other systems focus

on using bigger cabs to reduce taxi traffic , increasing matching

stability at the expense of matching optimality , or preserving

the user’s privacy by taking an infrastructure-less approach . A

general method for assessing the benefits of vehicle pooling

is presented in . This method uses shareability networks to

model the collective benefits of ridesharing, with a focus on

reducing the travel time of the shared rides. While we designed

RideMatcher as a general ridesharing system, it can be easily

customized to serve specific goals, like the above systems.

This can be done by adapting the function used for matching

rides to the desired goal.

VI. CONCLUSION

Sharing vehicles for daily commutes results in less traffic.

If ride sharing is applied in dense populated areas, a direct

noticeable impact on travel time, noise pollution and air quality

can be noticed. This paper introduces RideMatcher, a dis-

tributed ridesharing system designed to exploit fog computing.

Using a dataset comprising 34,837 taxi rides from New York,

we show that we can reduce the number of taxi rides by up to

65show that RideMatcher reduces the distance traveled by cabs

by 64system directly applicable on large scale for commuters

around the world while saving trip costs. While the promising

results presented here are limited to simulations, we plan to

implement RideMatcher as a complete solution for mobile

devices assisted by fog.

.

VII. REFERENCES

[1] 1) N. V. Bozdog, S. Voulgaris, H. Bal, and A. Van Hal-

teren, “Peer matcher: Decen-tralized partnership formation,”

in Self-Adaptive and Self-Organizing Systems(SASO), 2015

IEEE 9th International Conference on. IEEE, 2015, pp. 31–40

[2] 2) M. Mallus, G. Colistra, L. Atzori, M. Murroni, and

V. Pilloni, “Dynamic car-pooling in urban areas: Design and

experimentation with a multiobjective routematching algorith,”

Sustainability, vol. 9, no. 2, p. 254,2017.

[3] 3)Bozdog, N.V., Makkes, M.X., Van Halteren, A. and

Bal, H., 2018, May. Ride-Matcher: peer-to-peer matching of

passengers for efficient ridesharing. In 20184 NAME OF

SEMINAR18th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Comput-ing (CCGRID) (pp. 263-272).

IEEE.

[4] Montresor and M. Jelasity, “Peersim: A scalable p2p

simulator,” in Peer-to-Peer Computing, 2009. P2P’09. IEEE

Ninth International Conference on. IEEE, 2009, pp. 99–100.

http://www.jetir.org/

